The performance of orthogonal multi-matching pursuit under RIP

نویسنده

  • Zhiqiang Xu
چکیده

The orthogonal multi-matching pursuit (OMMP) is a natural extension of orthogonal matching pursuit (OMP). We denote the OMMP with the parameter M as OMMP(M) where M ≥ 1 is an integer. The main difference between OMP and OMMP(M) is that OMMP(M) selects M atoms per iteration, while OMP only adds one atom to the optimal atom set. In this paper, we study the performance of orthogonal multi-matching pursuit (OMMP) under RIP. In particular, we show that, when the measurement matrix A satisfies (9s, 1/10)-RIP, there exists an absolutely constant M0 ≤ 8 so that OMMP(M0) can recover s-sparse signal within s iterations. We furthermore prove that, for slowly-decaying s-sparse signal, OMMP(M) can recover s-sparse signal within O( s M ) iterations for a large class of M . In particular, for M = s a with a ∈ [0, 1/2], OMMP(M) can recover slowly-decaying s-sparse signal within O(s1−a) iterations. The result implies that OMMP can reduce the computational complexity heavily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTERDISCIPLINARY MATHEMATICS INSTITUTE 2010 : 01 Orthogonal super greedy algorithm and application in compressed sensing IMI

The general theory of greedy approximation is well developed. Much less is known about how specific features of a dictionary can be used for our advantage. In this paper we discuss incoherent dictionaries. We build a new greedy algorithm which is called the Orthogonal Super Greedy Algorithm (OSGA). OSGA is more efficient than a standard Orthogonal Greedy Algorithm (OGA). We show that the rates ...

متن کامل

A New Look at Generalized Orthogonal Matching Pursuit: Stable Signal Recovery under Measurement Noise

Generalized orthogonal matching pursuit (gOMP) is an extension of orthogonal matching pursuit (OMP) algorithm designed to improve the recovery performance of sparse signals. In this paper, we provide a new analysis for the gOMP algorithm for both noiseless and noisy scenarios. We show that if the measurement matrix Φ ∈ R satisfies the restricted isometry property (RIP) with δ7K+N−1 ≤ 0.0231, th...

متن کامل

Improved RIP Analysis of Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) has long been considered a powerful heuristic for attacking compressive sensing problems; however, its theoretical development is, unfortunately, somewhat lacking. This paper presents an improved Restricted Isometry Property (RIP) based performance guarantee for -sparse signal reconstruction that asymptotically approaches the conjectured lower bound given in Da...

متن کامل

Correction to "Generalized Orthogonal Matching Pursuit"

As an extension of orthogonal matching pursuit (OMP) improving the recovery performance of sparse signals, generalized OMP (gOMP) has recently been studied in the literature. In this paper, we present a new analysis of the gOMP algorithm using restricted isometry property (RIP). We show that if the measurement matrix Φ ∈ R satisfies the RIP with δmax{9,S+1}K ≤ 1 8 , then gOMP performs stable re...

متن کامل

Orthogonal Matching Pursuit under the Restricted Isometry Property

This paper is concerned with the performance of Orthogonal Matching Pursuit (OMP) algorithms applied to a dictionary D in a Hilbert space H. Given an element f ∈ H, OMP generates a sequence of approximations fn, n = 1, 2, . . ., each of which is a linear combination of n dictionary elements chosen by a greedy criterion. It is studied whether the approximations fn are in some sense comparable to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1210.5323  شماره 

صفحات  -

تاریخ انتشار 2012